Thermochemical Energy Storage Using Salt Hydrates

Ganesh Balasubramanian, Mehdi Ghommem, Muhammad R. Hajj, Ishwar K. Puri
Department of Engineering Science and Mechanics
Virginia Tech, Blacksburg, VA 24061

William P. Wong, Jennifer A. Tomlin
Science Applications International Corporation

2010 ASME IMECE, Vancouver, Canada
Thermochemical Energy Storage Using Salt Hydrates

Thermochemical phase change materials (TCM) for energy storage

TCMs impregnated into mesoporous materials like silica and zeolites

- Inorganic salt hydrates eg. MgSO\(_4\).7H\(_2\)O
- High volumetric heat capacity, low cost, easy availability
- Absorption of heat to release coordinated water
- Release of stored energy during hydration

Epsom Salt

Thermochemical Energy Storage Using Salt Hydrates

Seasonal thermal energy storage

\[
\text{Salt hydrate} \quad \xrightarrow{\text{Addition of heat(solar)}} \quad \text{Anhydrous salt} + \text{Water vapor}
\]

\[
\text{MgSO}_4 \cdot 7\text{H}_2\text{O} \quad \rightarrow \quad \text{MgSO}_4 + 7\text{H}_2\text{O}
\]
Thermochemical Energy Storage Using Salt Hydrates

Seasonal thermal energy storage

- Water released and heat stored when salt hydrates are heated above their dehydration temperature during warmer ambient periods
- Heat obtained from dehydrated salts by passing low temperature water vapor during cooler periods
Objectives of the investigation

- Design and optimize system geometry
- Characterize mechanisms
- Search for optimal material
- Compare performance of different potential TCMs using numerical and analytical experiments
- Predict optimum properties

Quantitative analysis

- Characterize total energy stored in dehydrated salts under different thermal conditions
- Energy loss by water vapor release from system
Configuration of the 2D simulation domain

- 2-dimensional square simulation box filled with porous MgSO$_4 \cdot 7$H$_2$O
- Heat flux applied from the top boundary
- Insulation of the other boundaries varied by introducing heat losses through them
Conservation of energy, mass and chemical species

Conservation of energy

\[
\frac{\partial}{\partial t} \left[(M_h N_h C_h + M_s N_s C_s + M_g N_g C_g) T \right] = \nabla (K \nabla T) + r M_h N_h \Delta H
\]

\[r = A \exp\left(-\frac{E}{RT}\right), \quad K = \beta_h K_h + \beta_s K_s + \beta_g K_g \]

The contribution of convective thermal and mass transport due to the movement of water vapor released from the salt hydrate is neglected.

Conservation of mass

\[
M_h \frac{\partial N_h}{\partial t} + M_s \frac{\partial N_s}{\partial t} + M_g \frac{\partial N_g}{\partial t} = 0
\]
Conservation of energy, mass and chemical species

\[\frac{\partial}{\partial t} \left[\left(M_h N_h C_h + M_s N_s C_s + M_g N_g C_g \right) T \right] = \nabla (K \nabla T) + r M_h N_h \Delta H \] \hspace{1cm} (1)

\[M_h \frac{\partial N_h}{\partial t} + M_s \frac{\partial N_s}{\partial t} + M_g \frac{\partial N_g}{\partial t} = 0 \] \hspace{1cm} (2)

Chemical kinetics

First order chemical reaction

\[\frac{\partial N_h}{\partial t} = -r N_h \] \hspace{1cm} (3)

Stoichiometry

\[\frac{\partial N_s}{\partial t} = - \frac{\partial N_h}{\partial t} \] \hspace{1cm} (4)
Significant nondimensional parameters in the model

\[
\frac{\partial}{\partial t} \left[(\eta_h + \eta_s + \eta_g) T \right] = K \nabla^2 T + D_m \eta_h \chi \exp \left(-\frac{E}{T} \right)
\]

\[
\frac{\partial \eta_h}{\partial t} = -D_m \eta_h \exp \left(-\frac{E}{T} \right)
\]

\[
\frac{\partial \eta_h}{\partial t} + \frac{C_h}{C_s} \frac{\partial \eta_s}{\partial t} + \frac{C_h}{C_g} \frac{\partial \eta_g}{\partial t} = 0
\]

\[
\frac{\partial \eta_s}{\partial t} = -\frac{M_s C_s}{M_h C_h} \frac{\partial \eta_h}{\partial t}
\]
Thermochemical Energy Storage Using Salt Hydrates

Significant nondimensional parameters in the model

\[
\frac{\partial}{\partial t} \left[(\eta_h + \eta_s + \eta_g) T \right] = K \nabla^2 T + D_m \eta_h \chi \exp\left(-\frac{E}{T} \right)
\]

\[
\frac{\partial \eta_h}{\partial t} = -D_m \eta_h \exp\left(-\frac{E}{T} \right)
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| \(D_m\) | Modified Damköhler Number
\(\frac{\text{Rate of thermochemical energy transfer}}{\text{Rate of heat diffusion}}\) |
| \(\chi\) | Dimensionless Thermochemical Heat Capacity
\(\frac{\text{Enthalpy of dehydration of MgSO}_4 \cdot 7\text{H}_2\text{O}}{\text{Heat capacity of MgSO}_4 \cdot 7\text{H}_2\text{O per unit mass}}\) |
| \(\hat{q}\) | Dimensionless Heat Flux
\(\frac{\text{Input heat flux}}{\text{Diffusive heat flux}}\) |
The local temperature of the uppermost boundary increases linearly (in region I) until the reaction temperature ($T = 1$) is reached after which there is an abrupt transition to a higher temperature during desorption (region II).
Transient evolution of concentration of different components

- The hydrated salt concentration decays as the temperature increases and its anhydrous form is produced.
- The increased concentration in the anhydrous component of the salt and the free water vapor are reflected in the η_s and η_g profiles.
The time required to initiate the desorption process for hydrated salts decreases nonlinearly as \(q \) increases.

Performance ratio

\[
\pi = 1 - \frac{\text{Energy lost}}{\text{Energy supplied}} = 1 - \frac{Q_g V}{\int_{t_r}^{t_e} q \, dt}
\]

As the input heat flux increases, the time required for the salt hydrate to undergo the reaction decreases.

When heat is lost from the insulated boundaries (\(\alpha \leq 0 \)), the effective energy available for the hydrate to undergo the chemical reaction is smaller.
A larger dehydration enthalpy ensures that all of the imposed flux is utilized towards the release of water vapor and a negligible fraction of the input energy diffuses through the system.

Heat diffusion in the system is enhanced by improving the thermal conductivity of the hydrate, resulting in smaller D_m values.

Rapid thermal conduction implies that the hydrate layers take longer to retain sufficient energy to complete the thermochemical desorption reaction.
Thermochemical phase change materials could have significant implications for long-term energy storage applications

1. A mathematical model to investigate the capability of salt hydrates to store thermochemical energy during their dissociation into anhydrous salts and water vapor when they are supplied with external heat.

2. A parametric study provides suggestions to improve process performance, e.g., by properly selecting materials for thermochemical energy storage.

3. The process performance is improved by introducing a smaller heat flux and considering materials that have larger thermal conductivities, higher specific heat capacities, and lower thermochemical desorption rates.

4. A future approach to material design during the next phase of our research will use the parameter optimization method that we have developed.

Questions?